Genetic Algorithms for Multiobjective Controller Design
نویسندگان
چکیده
Multiobjective optimization strategy so-called Physical Programming allows controller designers a flexible way to express design preferences with a ’physical’ sense. For each objective (settling time, overshoot, disturbance rejection, etc.) preferences are established through categories as desirable, tolerable, unacceptable, etc. assigned to numerical ranges. The problem is translated into a unique objective optimization but normally as a multimodal problem. This work shows how to convert a robust control design problem into a multiobjective optimization problem and to solve it by Physical Programming and Genetic Algorithms. An application to the American Control Conference (ACC) Robust Control Benchmark is presented and compared with other known solutions.
منابع مشابه
Satellite Conceptual Design Multi-Objective Optimization Using Co Framework
This paper focuses upon the development of an efficient method for conceptual design optimization of a satellite. There are many option for a satellite subsystems that could be choice, as acceptable solution to implement of a space system mission. Every option should be assessment based on the different criteria such as cost, mass, reliability and technology contraint (complexity). In this rese...
متن کاملMultiobjective gas turbine engine controller design using genetic algorithms
This paper describes the use of multiobjective genetic algorithms (MOGA’s) in the design of a multivariable control system for a gas turbine engine. The mechanisms employed to facilitate mnltiobjective search with the genetic algorithm are described with the aid of an example. It is shown that the MOGA confers a number of advantages over conventional multiobjective optimization methods by evolv...
متن کاملPareto Design of State Feedback Tracking Control of a Biped Robot via Multiobjective PSO in Comparison with Sigma Method and Genetic Algorithms: Modified NSGAII and MATLAB's Toolbox
An optimal robust state feedback tracking controller is introduced to control a biped robot. In the literature, the parameters of the controller are usually determined by a tedious trial and error process. To eliminate this process and design the parameters of the proposed controller, the multiobjective evolutionary algorithms, that is, the proposed method, modified NSGAII, Sigma method, and MA...
متن کاملOptimal Robust Motion Controller Design Using Multiobjective Genetic Algorithm
This paper describes the use of a multiobjective genetic algorithm for robust motion controller design. Motion controller structure is based on a disturbance observer in an RIC framework. The RIC approach is presented in the form with internal and external feedback loops, in which an internal disturbance rejection controller and an external performance controller must be synthesised. This paper...
متن کاملDesigninga Neuro-Sliding Mode Controller for Networked Control Systems with Packet Dropout
This paper addresses control design in networked control system by considering stochastic packet dropouts in the forward path of the control loop. The packet dropouts are modelled by mutually independent stochastic variables satisfying Bernoulli binary distribution. A sliding mode controller is utilized to overcome the adverse influences of stochastic packet dropouts in networked control system...
متن کامل